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S U M M A R Y  

Discrepancies between actual, viable spore populations and those predicted by a classical model during heat sterilization of food and pharmaceutical 
products have long concerned food engineers and scientists as they pursue new sterilization techniques, including ultra-high temperature processes. Among 
potential causes of those discrepancies, activation of dormant spores is significant, and models addressing that factor were developed recently. This paper 
reviews historic and current views on the biology and models of microbial spore populations during heat sterilization. Activation and inactivation of viable 
spores are emphasized, with each viewed as a first-order reaction. Rate constants of those reactions may differ significantly, inactivation rates of dormant and 
activated spores may differ, and variations of all rate constants with temperature appear to be well described by Arrhenius equations. Model-based analyses 
show how categories of survivor response curves observed during isothermal heat treatments can arise from simultaneous activation and inactivation of spores 
in an overall population. Effects of different distributions of initial subpopulations, different distributions of rate constants, and 'heat shock' for homogenizing 
an indicator population are shown. The complexity of new, multiple process models has not increased greatly, but the potential for accurate, dynamic prediction 
of product safety after prescribed sterilization has. The relevant biology is understood and accounted for more thoroughly, and it is anticipated that the new 
models will aid design and evaluation of new and improved sterilization processes for food and pharmaceuticals. 

I N T R O D U C T I O N  

The classical model  of a populat ion of  bacterial spores 
during lethal heating is based solely on inactivation of a 

homogeneous,  initial populat ion of  activated spores and 

consists mathematical ly of a single, first-order differential 

equation [1,3]. It has long been known that populat ion 
dynamics predicted by that model  often depart  significantly 

from those observed in isothermal laboratory experiments;  

the discrepancies generally have been attr ibuted to activation 
early in the heating of  spores that were dormant  in the 
initial population.  Margins of safety commonly  used in 

relatively low-temperature,  long-duration sterilization of  food 
and pharmaceutical  products diminish the importance of the 

discrepancies and the need for more  complex models.  

Greater  importance of  accurate predictions in laboratory 

contexts led to the c o m m o n  use of heat  shock, sublethal 
heating of  a spore suspension for uniform activation prior 

to lethal t reatment ,  to permit  use of the classical model  in 
characterizing spores and designing and validating thermal 
sterilization processes. 

In recent years, broader  ranges of product packaging and 
more stringent qualities expected of sterilized products 
have led to new requirements  and processes for thermal 
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sterilization, including ultra-high temperature  processes. The 
pursuit of new sterilization techniques by engineers and 

scientists has emphasized inadequacies of the classical model  
and established a need for more accurate models;  it has 

focused attention on activation of dormant  spores early in 

a thermal sterilization process. Several  researchers have 
reported on this matter ,  and of several models proposed,  
those by Shull et al. [13], Rodriguez et al. [9,10], and Sapru 

et al. [11] are most notable. However ,  only the Rodriguez/  

Sapru model  needs to be considered because it encompasses 
the Shull and classical models. 

The Rodriguez/Sapru model  offers many advantages over  

the classical model  and will be the preferred model  for many 
applications because it represents the broader  range of 

biological situations extant during lethal heating of spore 

suspensions. Consequently,  it is capable of more  accurate 

prediction of product safety after prescribed sterilization, 
facilitates interpretat ion and understanding of the relevant 

biology, and obviates heat shock for the traditional purpose. 
The Rodriguez/Sapru model  and any successors to it should 
become valuable tools for design, evaluation, and control 

of new, more sophisticated sterilization processes for food 
and pharmaceuticals.  While superior to the classical model ,  

complexity of the Rodriguez/Sapru model  is not  significantly 

greater;  application of it is relatively simple and proceeds 
in a manner  similar to that for the classical model.  

This chapter  examines behavioral  features of the classical, 

Sapru, Rodriguez,  and Shull models for the purpose of 

justifying the proposit ion that the classical model  be replaced 

by the Rodriguez/Sapru model.  Applicat ion of the Rodriguez/  
Sapru model  is discussed, including parameter  determinat ion,  
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Fig. 1. Process diagram of Model 1, the classical model. 

description of parameter variations with temperature by 
Arrhenius equations, and isothermal, dynamic, and ultra- 
high temperature regimes. 

MODELS 

A homogeneous, totally activated, single species popu- 
lation of bacterial spores subjected only to thermal inacti- 
vation (death) is depicted in Fig. 1. The circle labeled N 
represents the population; thermal inactivation, a transform- 
ation represented by the circle labeled D, transfers members 
from activated population N to a sink of inactivated (dead) 
spores depicted by the triangle. The two processes are 
described by: 

dN 
N: ~ t  ~ 3" = -3"a D: 3"d ~ Kd N (1) 

where Ka is the rate constant of the thermal death process. 
Combining the two descriptions yields the system equation. 

dN 
Model 1: dt - - K d N  (2) 

This is the classical model long used in thermal sterilization 
[1,3]. 

Now let the single species population be a mix of dormant 
and activated, but otherwise homogeneous and viable, 
subpopulations and allow thermal activation of the dormant 
spores. This more general situation is depicted in Fig. 2, 
where N1 and N2 denote, respectively, the dormant and 
activated subpopulations, transformation A denotes the 
activation process, and D denotes inactivation. The four 
processes are described by: 

r' 

d d 
NI: d tN1  ~ 3'1 N 2 : ~ N 2  -= 3'2 

A: 3'a ------ Ka N1 D: 3'd ~ Kd N2 (3) 

where Ka and Ka are rate constants of the processes. 
Structural constraints require 

~1 ~ --~a ~2 ~- 3'a-- 3'd (4) 

Appropriate combination of information in Eqns (3) and 
(4) yields the following mathematical model of this system. 

d 
dt N1 ~ - K a N1 

Model 2: 
d 
dt N2 -= Ka N1 - KdN2 

(5) 

This model was proposed by Shull et al. [13]. 
Additional generality is achieved by incorporating the 

possibility that lethal heating may kill some dormant spores 
before activating them. That possibility is included in Fig. 
3, where inactivation D1 has been added to the model in 
Fig. 2. With D1 and D described by 

Da: Ym -=KalN1 D: Yd---KdN2 (6) 

and A described as in Eqn (3), the mathematical model can 
be formulated as 

d 
d~N1 ~ - (Ka + Kd,)N1 

Model 3: 
d 
dt N2 ~ KaN1 - KdN2 

(7) 

This model was proposed by Rodriguez et al. [9] with rate 
constant Kal = Kd and by Sapru et al. [11] with distinct Kal 
and Ka. 

From the above, particularly Model 3 and concepts upon 
which it is based, additional models can be hypothesized for 
even more complex situations in the biology of bacterial 
spores during lethal heating. That is illustrated here by just 
one model applicable to a complex of two types of spores 
having distinct thermal properties as well as dormant and 
activated subpopulations. Possible situations include two 
species or two strains of a single species differing in the 
sensitivities of their thermal activation and inactivation 
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Fig. 2. Process diagram of Model 2, the Shull model. Fig. 3. Process diagram of Model 3, the Rodriguez/Sapru model. 



processes, as reflected in the values of rate constants. 
Rodriguez et al. [9] examined this case for injured and 
normal subdivisions of a single species. The situation is 
depicted in Fig. 4 as a double replication of Fig. 3; N 0 
denotes a subpopulation, with i indicating dormant (i = 1) 
or activated (i = 2) and j indicating a major subdivision 
(/" = 1 or 2) of the total population. Corresponding notation 
applies to the rate constants: Kaj, Kdj, and Kdlj. Note in 
Fig. 4 that the major subdivisions are not connected by any 
process; they function independently. That property is 
reflected in the mathematical model below, which consists 
of two independent sets of two coupled differential equations. 
Using process descriptions similar to Eqns (3) and (6), the 
mathematical model for Fig. 4 is a double replication of 
Eqn (7) in the form: 

d 
dtN11 --- _ (Kal -- Kd11)N11 

d 
~N21 ~ Ka lN l l  -- KdlN21 
13/ 

Model 4: (8) 

d 
d # 1 2  ~ - (Ka2 -1- Kd12)N12 

d 
~N22 ~ Ka2N12 - Kd2N22 

Although Models 2-4 are increasingly more complex than 
classical Model 1, they remain relatively simple relative to 
the range of population models. Yet, the incorporation of 
a few additional processes significantly expands behavioral 
features beyond those possessed by the classical model and 
more accurately represents bacterial spore populations for 
conditions extant in laboratory suspensions and food and 
pharmaceutical products during thermal sterilization. We 
now examine behavioral features of the four models, with 
emphasis on Model 3, since it encompasses Models 1 and 2 
and is the basis for Model 4. 

Fig. 4. Process diagram of Model 4, for two distinct subdivisions 
of a total spore population. 
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Isothermal responses 
With respect to the models presented above, relevant 

thermal properties of bacterial spores are their rate constants 
of activation and inactivation and the temperature dependenc- 
ies of those parameters. This information may be determined 
from isothermal survivor curves obtained at several tempera- 
tures. Many behavioral features of models and, in turn, real 
spore populations may be determined and interpreted 
from analyses of isothermal responses. The importance of 
isothermal analyses arises from the invariance of rate 
constants throughout isothermal heating; consequently, in 
such circumstances, all models presented above are linear, 
time invariant, and amenable to analytical solution. Further- 
more, many sterilization processes are viewed ideally as 
isothermal. 

During exposure of spores to isothermal, lethal heating, 
survivors are defined at instant t to be the activated spores, 
Nzj(t), in each (species, strain, or other) subdivision of the 
total population. Only activated spores are capable of 
forming colonies in supportive conditions and, therefore, 
can be identified by standard enumeration procedures. 
Although potentially viable, the same is not true of dormant 
subpopulations, and, by convention, they are not considered 
survivors. 

Enumeration procedures may not distinguish subpopula- 
tions, Nzj, in a spore complex, so care must be exercised in 
using and interpreting enumerated survivors. With respect 
to the models above, the degree of sterilization achieved at 
instant t by a thermal process and the potential for spoilage 
of product later and conveyed by the undifferentiated 
numbers of survivor spores, N(t), and viable, dormant 
spores, Nl(t), 

N(t) =- ~ N2j (t) (9) 
v j  

Nfft) =- ~ Nlj (t) (10) 
v j  

remaining relative to their initial numbers, N(0) and NI(0). 
The comparative analysis of spore population models 

presented below utilizes the following scenario. Exposure of 
spores to constant temperature T occurs over time interval 
(0, ts). Prior to exposure, the total number of spore bodies 
(undifferentiated) equals DMC, the direct microscopic count. 
The DMC consists of dormant and activated viable subpopula- 
tions N 0 with initial numbers N/j(0) -= Nu0. The DMC may 
also include a subpopulation of dead spores. The initial 
numbers of survivors, N(0)-= No, and viable, dormant 
spores, Nl(0) ~ N10, are given by 

No ~ ~ N2jo (11) 
v i  

and 

N10 --- ~ Nlj0 (12) 
v]  
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Consider, first, classical Model 1 containing only activated 
population N and described by Eqn (2). By analytical 
solution, only one mode of survivor curve is possible-- 
exponential decay from initial population No. 

N(t) : No e -Kdt = NO e t/(2.3D) (13) 

The final form of Eqn (13) invokes decimal reduction time 
D commonly used in thermal process calculations [16]. The 
semilogarithmic graph of Eqn (13), a line with slope - Kd 
and intercept ln(N0), generally is used to estimate No and 
Ka or D. Reduction of N from No by L log cycles requires 
exposure for 2.303 L Ka units of time -1. 

Model 2 has dormant and activated subpopulations with 
initial numbers Nm and N20, respectively. Analytical solution 
of Eqn (5) yields survivor response N, 

N(t)  =-- N2(t) = N2o e -KJ 
K~ 

+ Ka - Ka Nlo (1 - e (K - Kd)~ ) e--Kdt 

(14) 

for Ka :~ Kd. The solution for K~ = Kd, available in Shull 
et al. [13], is not important here. The shape of this survivor 
curve depends on relative sizes of Nlo and N2o and of Ka 
and Ka, and it is clear that the possibilities are much more 
robust than the classical response of Eqn (13). In particular, 
the second term in Eqn (14) can cause the shoulder often 
observed early in real, laboratory exposures. 

The survivor response of Model 3, found by analytical 
solution of Eqn (7), is 

Ka 
N(t) ~ Nz(t) = N2o e -KJ + 

K~ + Kdl -- Kd 
NlO (1 - e-(K. + Kdl - Kd)t) e -Kd 

(15) 

Equations (14) and (15) differ little in substance, but they 
may differ significantly in shape for common K, and 
significant difference in Km and Kd. 

Finally, survivor responses for Model 4 are N2~ and N22 

for the individual divisions and N = N2~ + N22 for the whole 
complex, with Nza and N22 having forms like Eqn (15). With 
initial populations N~ao and N21o for the first division and 
N12o and N22o for the second, analytical solution of Eqn (8) 
for N2~ and N22 and summation of them yield survivor 
response 

N(t )  = N21(t) + N22(t) 

N210 e-Kdl t 

Kal Nno(1-e  (Kal+Kdll--Kdl)t) e Kdlt 
+ K a l + K d l l _ K d  1 

q- N220 e--Kd2 t 

K~2 + - . N12o(1-e (Kaa+Kdl2--Kd2)t) e-Ka2t 
Ka2 + Kd I 2 - - / ~ d 2  

(16) 

Clearly, this behavior is far beyond the simple exponential 
of the classical model. 

Comparison of the models continues by examining graphs 
of their survivor responses. The analysis is facilitated by 
normalizing time by 1/Kd and N2 by N2o. This choice of 
normalization factors was guided by the fact that Ka and 
N2o pertain to the relatively slow decay of the activated 
spore population, which is the focus of the classical model. 
With N'2 ~ N2/N2o and t' -= Kdt, survivor responses of Eqns 
(13), (14), and (15) become, respectively, 

N ' ( t ' )  = e - "  

N ' ( t ' )  =- N~(t ')  = e - c  + - -  

(17) 

Ka/Ka IN, o] (1 - e-(KjK,~-')t')e-t' 
Ka/Ka- 1 [N2o] 

(18) 

N ' ( t ' )  =- N~(t ')  

= e-t' + Ka/KN 
Ka/Kd + Km/Kd - 1 

[ Nm] (1 - e (Ka/Kd + Kdl/Kd--1)") e-"  
N2oJ 

(19) 

The survivor curves of Eqns (17), (18) and (19) are 
plotted in Fig. 5 for N l d N 2 o  = 5, Ka/Kd = 5, and Kal = Kd. 
Although all three models begin with the same activated 
population, N2o, the curves of Eqns (18) and (19) differ 
considerably from the classical curve of Eqn (17) because 
heating activates a large portion of initially dormant spores, 
Nm, before subsequently killing most of them. Note that 
mortality of dormant spores before activation can significantly 
shift curve of Eqn (19) for Model 3 below curve of Eqn 
(18) for Model 2, which omits that mortality. Other choices 
of parameters and initial conditions cause relative shapes of 
the three curves to change only in degree, not substance. 
Of course, Nm = 0 results in Eqns (18) and (19) being 
identical to the simple, classical Eqn (17). Mixed suspensions 
of dormant/activated spores prior to lethal heat treatment 
are realistic situations that led to the practice of using heat 
shock (low temperature heating of suspension to assure 
uniform activation of viable spores) to permit continued use 

> 

,"',, N'(t) for: + Model 1 
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Fig. 5. Normalized, isothermal survivor curves of Models 1, 2, and 

3 for Nlo/N2o = 5 and Ka/KN = Ka/K~l = 5. 
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Fig. 6. Normalized survivor curves possible with Model 3 when 
maintaining K,/Ka = KJKm = 5 and varying N~o/N2o. 

of the classical model of sterilization. Use of Model 3 obviates 
heat shock for that purpose and permits representation of 
a broader range of situations. 

The range of shapes of survivor curves possible with 
Model 3 is indicated by Figs 6, 7, and 8. In Fig. 6, Ka/ 
Kd = 5 and Kdl = Kd are maintained while N10/N20 is varied. 
In Fig. 7, N~o/N2o = 5 and Ka/Kd = 5 are maintained while 
KflKa~ and, thereby, Kal/Ka are varied. Finally, the effect 
of varying KJKd while maintaining NldN2o = 5 and K J  
Kd, = 5 is illustrated in Fig. 8. Figures 5-8 indicate the 
following: activation of initially dormant spores can greatly 
influence the shape of a survivor curve; that influence 
typically occurs early in the heating; survivor curves for 
mixed dormant/activated initial populations are not single, 
simple exponentials, as has been verified frequently by 
experimental data; activation of initially dormant spores can 
cause a 'shoulder'  in a survivor curve that has also been 
observed frequently in experimental data; the magnitude of 
a shoulder depends on Nao/N2o and ratios of rate constants; 
and classical Model 1 is inadequate for general representation 
of bacterial spore populations during sterilization of labora- 
tory suspensions and food and pharmaceutical products. 

o q.e 

> 

I 2 3 4 5 

Time 
Fig. 7. Normalized survivor curves possible with Model 3 when 
maintaining Nm/N2o = 5 and Ka/Ka = 5 while varying Ka/Ka~ and, 

thereby, Kdl/K d. 
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Fig. 8. Normalized survivor curves possible with Model 3 when 
maintaining Nlo/N2o = 5 and Ka/Kal = 5 while varying Ka/Kd and, 

thereby, Km/K d. 

Examination of Eqn (15) provides additional insight on 
the behavior of Model 3. The first term in Eqn (15) pertains 
only to inactivation of initial, activated population N20; it is 
identical to the classical response of Eqn (13) for an initial, 
uniformly activated population equal to ?420. The second 
term in Eqn (15) pertains only to activation and subsequent 
inactivation of initial, dormant population N~0. Those two 
components add to give total survivor curve N. Normalized 
graphs of the components and survivor curve in Eqn (15), 
as given by Eqn (19) with N' =- N/N2o and t' ~- Kat, are 
shown in Fig. 9 to illustrate the relationships. While 
the first term continually declines exponentially from 1 
(corresponding to Nz0 in Eqn (15)) with rate constant Kd, 
the second term initially rises from zero due to activation 
of surviving members of N~o and peaks before declining 
exponentially with rate constant Ka. Depending on relative 
amplitudes of the two terms, reflecting Nto/N2o, Ka/Kdl, and 
Km/Kd, the second term in Eqn (19) may cause N'  to rise 
from 1, peak, and then decline exponentially with rate 
constant Kd as in Fig. 9. Possible variations of N'  with 
values of N~o/Nzo, Ka/Kdl, and K,/Kd were illustrated in Figs 
5-8. 

+ N'(t) 
[ / '... \ * First term 

! / . . / : . . . ~  ..... Q) Second term 

/ """'..... 

i""-, ... ........ 
i ~ " - - ~ .  " ......... 

, : ...... 7 - - "  . . . . . . . .  

i i i i i 
0 I 2 3 4 5 

Time 

Fig. 9. Normalized graphs of first and second components in Eqn 
(18) add to give normalized survivor curve N' of Model 3. 
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The peak value of N for Model 3 and the time, tp, at 
which it occurs are found by differentiating Eqn (15), setting 
dN/dt = 0, and solving for tp. The result is 

1 [ 
tp = K, + Kal - Kd In 1 + 

K a  Kd- -4 -  Kat N2o-][ 
K~ + ~ - - - K a  

Ka NlO J 

(20) 

Using this value of t in Eqn (15), the peak value is 

N (tp) = N2o e -Kd 'p  + K a  
K~ + Kal - Kd Nl~ 

(1 - e - (Ka  + Kdl Kd)tp) e-Kptp  

(21) 

If the duration of isothermal, lethal heating exceeds 5/ 
(Ka + Kdl), the maximum possible number of initially 
dormant spores, (Kfl(Ka + Km))Na0, are activated early in 
the exposure. If the duration exceeds 5/(K1 + Kda - Ka), 
the nested exponential, exp( - (K~ + K m -  Kd)t), in the 
second term of Eqn (15) becomes essentially zero, and, 
from then on, N follows 

[ Ka ] 
N(t) ~- N2o + K~ + Kdl -- Kd Nl~ e-Ka' (22) 

which is the tail of the survivor curve due to predominant 
inactivation. In this region, the curve is an exponential that 
appears to have begun with pseudo initial activated population 
N2o + (K./(K. + Ka, - Ka))N,o. 

Figure 10 demonstrates the high quality of predictions by 
Model 3 through comparison at four lethal temperatures of 
model predicted isothermal survivor curves, (Eqn (15)), 
with data from corresponding experiments for Bacillus 
stearothermophilus spores. Similar comparisons for other 
species of spores and for numerous replications have proven 
equally well [9,10,11]. 

The diversity of responses of Model 4 for two types of 
spores is great, and only two situations are examined here. 
Normalizing time by 1/Ka2 and N by N220, parameters of 
activated spores of the second type, t' --- t/Kd2 and Eqn (16) 
becomes 

, , 1 , 1 , 1 . . . . .  
U ( t ) = - ~ U ( t )  nr Nza(t )+ nr U22(t )=-N~a(t )+N;z(t  ) 

1 Y 220 l Y 220 1 ~ 220 

N2l~ - Kd'/Kd2t' e a l / e d a  [ Nal0 ] (23) 
- N22~ e + Kaa/Kaa + Kal /Kal-1  [Na20] 

[ [ - - [  Ka l  K d l '  Kda ]  t ]q 
1 - e x p [  LKa24 Kd2 Kd2J t j j  L 

e - Kd 1/Kd2 t' 

Ka2/Ka2 [Na2o] 
+ e - t '  + Kaz /Kd  2 + Kd12/Kd2--1  [N220J 

1 - e x p [  [ K d 2 + ~ d 2 - - 1  t' e -t '  

In the first case considered, both types of spores are 
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Fig. 10. (a)-(d). Predicted and corresponding experimental, iso- 
thermal survivor curves of B. stearothermophilus spores at 105, 110, 
115, and 120 ~ demonstrate the high quality of predictions by 

Model 3 [11]. 

initially present in equal proportions, type 1 spores are 
moderately more sensitive to heat than type 2 spores, and 
activation of both types is more rapid than inactivation: 

N210/N220 = 1, Nllo/N210 = N120/g220 = 5; K a l / K d 2  = 2, K a l /  

Kal = KajKml  = 10, K,2/Ka2 = 2, Kaz/Km2 = 5. For those 
conditions, Fig. 11 shows normalized survivor curves ~'1 for 
type 1, ~P2 for type 2, and N' = ~ ' t  + N~'2 for all spores. The 
second case is similar to the first except that type 1 spores 
are much more sensitive to heat than type 2 spores, and the 
two types are not initially present in equal proportions: Nza0/ 
N220 = 2, Nla0/N210 = 5,  N12o/N22o = 10; Kdl /Kd2  = 20, K a l /  

Kdl = K,JKan  = 10, Kaz/Kd2 = 0.5, Kaz/Km2 = 5. Figure 
12 shows normalized component and aggregate survivor 
curves for those conditions. Responses in Fig. 11 are 
compatible with those in Figs 5-8 and introduce nothing 
new. Figure 12 introduces another mode of aggregate 
survivor curve that has been observed experimentally [9, 
16]. It exhibits a very fast initial increase and subsequent, 
slightly slower decline due primarily to very rapid activation 
and inactivation of type 1 spores. The curve continues with 
a slower increase, attributable to activation of initially 
dormant type 2 spores, followed by an even slower decline 
caused by inactivation of activated, type 2 spores. With the 
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Fig. 11. Normalized survivor curves N'2a and N'22 of type 1 and 
type 2 spores in Model 4 and aggregate curve N' = N'2~ + N'22 
when the two types initially are equally present with type 1 spores 
moderately more sensitive to heat than type 2 and activation of 
both more rapid than inactivation. The conditions: N2ao/N22o = 1, 
Nllo/X21 o = N12o/N22 o : 5; Ko1/Kd2 = 2, Kal/Ko1 = Ual/Udl I - 10, 

K,2/Ka2 - 2, Ka2/Km2 = 5. 
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Fig. 12. Normalized survivor curves  N'21 and N'22 of type 1 and 
type 2 spores in Model 4 and aggregate curve N' = N'21 + N'22 

when the two types initially are present in different proportions 
with type 1 spores much more sensitive to heat than type 2 and 
activation of both more rapid than inactivation. The conditions: 
N21o/N22 o = 2, Nllo/N21 o = 5, NI2o/N22 o = 10; Kdl/Ka2 = 20, K.1/ 

Kdl = Ka l /Kml  = 10, Kaz/Kd2 = 0.5, Kaz/Kdl 2 = 5. 

much faster rate constants of type 1 spores, all the action 
is over for type 1 spores before activation of type 2 is 
finished. 

Activation and heat shock 
It has been common practice to heat suspensions of 

spores at sublethal, constant temperature prior to using 
them in experiments for thermal characterization of spores 
and validation of sterilization processes. The purpose has 
been to activate dormant spores initially present and 
achieve a uniformly activated suspension appropriate to 
representation during lethal heating by classical Model 1 
given in Eqn (2). Empirical requirements for the procedure 
exist [2,4,5,7,14,15], but Model 3 provides another basis for 
the requirements. 

The first part of Eqn (7) describes the fate of a single 
type of initially dormant spore, N10, in a suspension during 
both sublethal and lethal heating; its isothermal response, 

Nl(t) = Nlo e -(K- + Kdl)t (24) 

permits calculation of the time required at specified tempera- 
ture to activate a suspension uniformly. Reduction of 
dormant subpopulation N1 from initial value N10 to negligible 
value Nil can be expressed in terms of L = log (NldNaf). 
At  the specified sublethal temperature, Ka and Kal have 
specific values, and the time, ths, required to reduce N1 by 
L log cycles is readily found from Eqn (24) to be: 

L 
ths : 2.3 (Ka + Kdl) (25) 

Therefore, to reduce the initial, dormant subpopulation of 
a suspension to negligible value expressed by L log cycles 
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of reduction, isothermal heating at the specified sublethal 
temperature for th~ units of time is required. 

During heat shock, activated spore population N = N2 
changes according to Eqn (15) from initial value N;0 to final 
value N(ths). For subsequent lethal heating of the suspension, 
No-= N(ths) is the appropriate initial condition for rep- 
resenting N by classical Eqn (2). With th~ sufficiently long, 
the parenthesis in the second term of Eqn (15) essentially 
equals 1, and 

[ Ka ] 
No ~ N(ths) ~- N2~ + Ka + Kdl -- Kd NI~ e--Kdth~ (26) 

Note from Eqn (26) that, in general, No 4= N2o + Nlo. 
Logarithmic reduction, L, and duration, ths, of heat shock 
must be selected to assure that N~ ~ 0 and Eqn (26) hold 
for t > the, otherwise Eqn (26) and use of the classical model 
will not be valid. 

Dynamic and U H T  responses 

Dynamic responses of models are important to the 
design and biological validation of sophisticated, modern, 
sterilization systems because in many cases temperature 
regimes are dynamic rather than constant and rate constants 
are functions of temperature. It follows that rates of 
activation and inactivation vary throughout dynamic thermal 
processes and complicate predictions of spore population 
dynamics, especially in ultra-high temperature, short-duration 
(UHT) processes. This section briefly indicates the dynamic 
response capabilities of the Rodriguez/Sapru model, Model 
3 in Eqn (7), and complements earlier discussion of its 
isothermal responses. 

Isothermal responses N1 and N = N2 of Model 3 given 
by Eqns (24) and (15), respectively, are not valid in dynamic, 
lethal temperature regimes because Ka, Kd, and K~I vary 
with temperature and it is not mathematically proper merely 
to vary each rate constant in Eqns (24) and (15) with 
temperature. For each dynamic, lethal heating, Eqn (7) 
must be solved by analytical means or computer simulation 
over the interval of heating while varying all rate constants 
in response to temperature variation and incorporating initial 
populations N1o and N20. Temporal variation of each rate 
constant over a heating interval is accomplished by operating 
on the temperature regime with the static function relating 
each rate constant to temperature. Those functions must be 
known over the range of temperature to be investigated; 
they are determined by experiments mentioned briefly in 
the next section. 

The next few figures demonstrate the performance 
capabilities of Model 3 for dynamic, lethal temperature 
regimes. Figure 13(a) presents survivor curves of B. subtilis 

spores simulated by Model 3 and Model 1, the latter for 
two extremes of initial, activated population No, in response 
to the dynamic temperature in Fig. 13(b) [10]. The curves 
demonstrate earlier discussion about responses of the two 
models differing significantly early in lethal heating due to 
activation of a significant initial, dormant population in 
Model 3. Note that tails of the curves are similar in shape 
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Fig. 13. Survivor curves (a) of B. subtilis spores simulated by Model 
3 and Model 1, the latter for two extremes of initial, activated 
population No, in response to the dynamic temperature in (b) [10]. 

because only inactivation of activated spores occurs in that 
region but are offset because initial conditions of the 
three curves differ substantially. Note further the dynamic 
correspondences between input temperature and responses--  
plateaux in survivor curves correspond to large, negative 
excursions of temperature and large declines in populations 
occur during high temperature. Figure 14 demonstrates how 
well experimental survivor curves of B. stearothermophilus 

spores compare with those simulated with Model 3 for a 
dynamic temperature also shown in the figure [11]. 

In a series of ultra-high temperature (UHT) experiments, 
suspensions of B. stearothermophilus spores were subjected 
to 123-146 ~ peak value and 6 7 3  s duration rectangular 
pulses of temperature [11]. It was not possible to measure 
survivor curves at points spread over the heating intervals, 
so just numbers of survivors at the conclusion of UHT 
treatments were measured and compared with values pre- 
dicted by simulations with Model 3. The simulation used 
actual UHTs as input and initial dormant and activated 
populations as initial conditions. The scatter diagram in Fig. 
15 comparing predicted and measured values is generally 
favorable. High numbers of survivors resulted for lower 
temperature short duration UHT treatments, where the 
dynamics correspond to early stages of isothermal survivor 
curves when both activation and inactivation function 
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Fig. 15. Scatter diagram of numbers of B. stearothermophilus 
survivors at the conclusion of UHT treatments measured in the 

laboratory and predicted by Model 3 [11]. 

strongly. Low numbers of survivors resulted for higher 
temperature and longer duration because full traversal of 
the survivor curve and high reduction of the initial, viable 
population was accomplished. 

Application of the Rodriguez/Sapru model 
Advantages of the Rodriguez/Sapru model make it 

preferable to the classical model for many applications; this 
section provides an overview of its application. First, 
suitability of the model for representing a specific situation 
is assessed by ascertaining that it involves heating of a 
homogeneous, single species/strain population of spores in 
potentially mixed dormant/activated states. If a different, or 
more complex situation exists, a new model should be 
developed consistent with the concepts and methods 
embodied in the Rodriguez/Sapru model. Such was exem- 
plified by Model 4 in this paper and a model of a combined 
population of normal and injured spores by Rodriguez et 
al. [9]. In the sequel, the Rodriguez/Sapru model is assumed 
to be suitable to the situation addressed. 
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Quantitative application of the Rodriguez/Sapru model 
requires species/strain specific values of rate constants Ka, 
Kd, and Kal and initial subpopulations N10 and N2o, 
respectively, of dormant and activated spores. Initial subpop- 
ulations in a sample of untreated suspension or product are 
determined under the common assumption that all spores 
in a direct microscopic count (DMC) of the sample are 
viable [6]. Incubation of the sample and enumeration of 
colony-forming units yields the initial number of activated 
spores, N~o, and the initial number of dormant spores, N10, 
is calculated from 

N10 = DMC - N2o (27) 

Rate constants for a specific species/strain of spores 
at specified temperature are obtained by analysis of an 
experimental, isothermal survivor curve for a suspension of 
those spores and known values of Nt0 and N2o. Specifically, 
Ka, Kdl, and Ka2 are estimated by nonlinear regression, with 
the procedure in SAS [11,12] or by Levenburg-Marquardt  [8, 
9,10] fitting Eqn (15) of the model to data defining the 
experimental curve. Initial estimates of Ka, Kdl, and Ka 
required by the nonlinear procedures are appropriately 
calculated from the data by the method of successive 
residuals [10]. 

Rate constants estimated at a single temperature apply 
only to that temperature. Applications of the model for 
other constant or dynamic temperature regimes require 
estimates of the rate constants and, preferably, continuous 
functions describing them as functions of temperature over 
a range of temperature. It follows that isothermal experiments 
and estimations of rate constants must be performed 
at several temperatures over the prescribed range, and 
expressions relating rate constants to temperature must be 
found by regressing graphs of rate constants vs temperature. 
This was done for B. subtilis spores over 87-99 ~ by 
Rodriguez et al. [10] and for B. stearothermophilus spores 
over 105-120 ~ by Sapru et al. [11]. In both cases, 
dependencies of rate constants of activation and inactivation 
on temperature were described well by the empirical 
Arrhenius equation [17], 

K A e - G / R r  (28) 

where K denotes a rate constant, A = frequency constant 
( t ime-i) ,  Ea = activation energy (J mol-1), T = absolute 
temperature (~ and R = gas constant (8.314 
J mo1-1 ~ Estimation of A and Ea is usually done by 
regressing semilogarithmic plots of rate constant date and 
Eqn (28); i.e. Arrhenius plots of In K vs 1/T from Eqn (28). 

Ea 1 
ln(K) = ln(A) R T (29) 

Use of the Rodriguez/Sapru model at UHT is contingent 
upon the ability to determine valid rate constants in that 
range, but generation of isothermal, UHT survivor curves 
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for parameter estimation is difficult. An approach to the 
matter is extrapolation to UHT of results obtained at 
lower lethal temperatures, using the Arrhenius equations 
established for that range. In a series of UHT experiments 
with B. stearothermophilus spores over 123-146 ~ by Sapru 
et al. [11], rate constants in that range estimated with 
Arrhenius equations established at 105-120 ~ gave very 
good agreement between model predicted (by simulation) 
and experimental numbers of survivors at the conclusion of 
UHT heating. 

With rate constants and their dependencies on temperature 
for a specific species/strain of spores known and with N10 
and N20 known for dormant and activated subpopulations 
of those spores in a specific suspension or product, the 
dynamics of those subpopulations and the survivor curve 
caused by specific, lethal heating of the suspension or 
product may be estimated by computer simulation or 
analytical solution of the Rodriguez/Sapru model given by 
Eqn (7). Both simulation and analytical solution of Eqn (7) 
are readily accomplished on a microcomputer, and graphs 
of the temperature regime and response variables, e.g. N~ 
and N = N2, over the exposure interval are the most useful 
forms of output. During a simulation or analytical solution, 
rate constants are varied as temperature varies by means of 
the Arrhenius equations; those variations of rate constants 
are the only way temperature enters the model and affects 
population dynamics. Temperature may be constant or 
dynamic and in the low or UHT lethal range. Such analyses 
of the behavior of the model enable one to predict, 
understand, and interpret the dynamics and effectiveness 
of existing and proposed sterilization processes, and the 
Rodriguez/Sapru model should be a tool in the design and 
validation of new, thermal sterilization processes. 

CONCLUSION 

The classical model of bacterial spore populations during 
thermal sterilization inadequately represents biological situ- 
ations commonly extant in spore suspensions and food and 
pharmaceutical products. The Rodriguez/Sapru model offers 
many advantages and will be preferred for many applications 
because it represents the broader range of situations extant 
during lethal heating of spore populations. Parameters of 
the Rodriguez/Sapru model for a specific species/strain of 
spores are readily determined by isothermal experiments. 
Dependencies of the parameters on temperature in the 
lower, lethal range, e.g. 100-120 ~ are well described by 
Arrhenius equations that may be used to estimate values of 
the parameters for UHT. The Rodriguez/Sapru model 
obviates heat shock commonly employed to permit use of 
the classical model. 

With rate constants of the Rodriguez/Sapru model and 
their dependencies on temperature known for a specific, 
single species/strain of spores and with initial dormant and 
activated subpopulations of those spores known for a specific, 
unsterilized suspension or product, the dynamics of those 
subpopulations in response to a specific thermal sterilization 
process and the effectiveness of the process may be estimated 

by computerized analyses of the model. The temperature 
may be constant or dynamic and in the low or UHT lethal 
range. The Rodriguez/Sapru model is useful for analysis, 
understanding, and interpretation of existing and proposed 
sterilization processes and in the design and validation of 
new processes. 
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